https://ukchanoh.wordpress.com/2015/02/16/multicollinearity/

 

언제 다중공선성(multicollinearity)을 무시해도 괜찮은가?

생각해보니 통계분석에서 가장 많이 받았던 질문 주제 중의 하나가 다중공선성이었다. 다중공선성은 절대적인 진단기준도 없을 뿐더러 처치방법도 별로 없으니 크게 신경쓰지 말라는 취지의 얘기를 주로 했는데 그리 책임있는 답변은 아닌 듯 하다. 이 문제와 관련하여 Paul D. Allison 교수(University of Pennsylvania)의 아래 글이 …

ukchanoh.wordpress.com

 

1. 관심변수가 아닌 통제변수인 경우

  - 관심변수의 VIF 값은 낮은 경우

 

2. interaction term 또는 power와의 관계

  - 증명될 수 있다고 함

 

3. 3개 이상의 범주를 가지는 더미변수

 

 

 

 

https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/

 

Multicollinearity in Regression Analysis: Problems, Detection, and Solutions - Statistics By Jim

Multicollinearity is when independent variables in a regression model are correlated. I explore its problems, testing your model for it, and solutions.

statisticsbyjim.com

  1. Multicollinearity affects the coefficients and p-values, but it does not influence the predictions, precision of the predictions, and the goodness-of-fit statistics. If your primary goal is to make predictions, and you don’t need to understand the role of each independent variable, you don’t need to reduce severe multicollinearity.
    예측이 목적이며, 설명변수에 대한 이해가 필요하지 않다면 다중공선성을 그리 걱정하지 않아도 된다??
      ㆍThe fact that some or all predictor variables are correlated among themselves does not, in general, inhibit
         our a
    bility to obtain a good fit nor does it tend to affect inferences about mean responses or predictions of
         new observations.  —Applied Linear Statistical Models, p289, 4
    th Edition.

'분석 > 통계' 카테고리의 다른 글

Time Series 3  (0) 2019.03.14
Time Series study2  (0) 2019.03.11
Time Series study  (0) 2019.03.09
최종 머신러닝 모형에서 variance를 줄이는 방법  (0) 2019.03.09
추세선의 증가하는 정도를 아는 방법 : 선형회귀분석  (0) 2019.03.05

+ Recent posts