Time series decomposition
□ Moving averages
- Trend-Cycle을 추정하는데 사용
- MA의 차수는 smoothness를 결정함( m↑ → smoother)
- MA of MA : 가운데 자료에 가중치를 더 준다.(smoother)
□ Classical decomposition
- assumption : the seasonal component is constant from year to year.
* seasonal indices : 계절지수
- 더 나은 방법들이 있기에 잘 쓰이진 않음.
1) trend-cycle : 양 끝으로 사라지는 값이 존재 + over-smooth rapid rises and falls in the data
2) seasonal component가 매년 반복될 것을 가정 but 그렇지 않은 경우가 많음. → 긴 시간 변화에 따른 seasonal change를 포착하지 못함.
3) not robust to unusual values
□ X11 decomposition
- quarterly and monthly data
- based on classical decomposition
- 양 끝 값에 대한 추정이 가능 + seasonal component : vary slowly over time.
- has some sophisticated methods for handling trading day variation, holiday effects and the effects of known predictors.
- is entirely automatic and tends to be highly robust to outliers and level shifts
□ SEATS decomposition
: Seasonal Extraction in ARIMA Time Series
- works only with quarterly and monthly data.
□ STL decomposition
* versatile : 다재다능한
- will handle any type of seasonality, not only monthly and quarterly data.
- be controlled by the user(change over time, the rate of change, the smoothness of the trend-cycle)
- It can be robust to outliers
- unusual obs가 trend-cycle, seasonal components의 추정에 영향을 미치지 않지만,
remainder component에는 영향을 미친다.
- does not handle trading day or calendar variation automatically
★ parameters
1) trend-cycle window(t.window) : is the number of consecutive observations to be used
when estimating the trend-cycle
2) seasonal window(s.window) : is the number of consecutive years to be used in
estimating each value in the seasonal component. / 디폴트X
→ control how rapidly the trend-cycle and seasonal components can change.(smaller → rapid changes)
should be odd numbers!
< Exponential smoothing >
- 예측은 과거 값들의 가중평균이며, 순서가 멀어질수록 가중치가 낮아진다.
□ Simple exponential smoothing
- is suitable for forecasting data with no clear trend or seasonal pattern.
- 과거의 데이터보다 현재와 가까울수록 가중치를 둔다.
- smoothing parameter : alpha in [0,1]
□ Trend methods
- Holt's linear trend method
'분석 > 통계' 카테고리의 다른 글
다중공선성을 무시해도 되는 순간이 있다? (0) | 2019.03.28 |
---|---|
Time Series 3 (0) | 2019.03.14 |
Time Series study (0) | 2019.03.09 |
최종 머신러닝 모형에서 variance를 줄이는 방법 (0) | 2019.03.09 |
추세선의 증가하는 정도를 아는 방법 : 선형회귀분석 (0) | 2019.03.05 |